skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kollipara, Pavana_Siddhartha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The collective motion observed in living active matter, such as fish schools and bird flocks, is characterized by its dynamic and complex nature, involving various moving states and transitions. By tailoring physical interactions or incorporating information exchange capabilities, inanimate active particles can exhibit similar behavior. However, the lack of synchronous and arbitrary control over individual particles hinders their use as a test system for the study of more intricate collective motions in living species. Herein, a novel optical feedback control system that enables the mimicry of collective motion observed in living objects using active particles is proposed. This system allows for the experimental investigation of the velocity alignment, a seminal model of collective motion (known as the Vicsek model), in a microscale perturbed environment with controllable and realistic conditions. The spontaneous formation of different moving states and dynamic transitions between these states is observed. Additionally, the high robustness of the active‐particle group at the critical density under the influence of different perturbations is quantitatively validated. These findings support the effectiveness of velocity alignment in real perturbed environments, thereby providing a versatile platform for fundamental studies on collective motion and the development of innovative swarm microrobotics. 
    more » « less
  2. Abstract Inspired by the “run-and-tumble” behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery. 
    more » « less
  3. Abstract Subwavelength optical resonators with spatiotemporal control of light are essential to the miniaturization of optical devices. In this work, chemically synthesized transition metal dichalcogenide (TMDC) nanowires are exploited as a new type of dielectric nanoresonators to simultaneously support pronounced excitonic and Mie resonances. Strong light–matter couplings and tunable exciton polaritons in individual nanowires are demonstrated. In addition, the excitonic responses can be reversibly modulated with excellent reproducibility, offering the potential for developing tunable optical nanodevices. Being in the mobile colloidal state with highly tunable optical properties, the TMDC nanoresonators will find promising applications in integrated active optical devices, including all‐optical switches and sensors. 
    more » « less